Inexpensive, Firm PV Without Conventional Backup: The Role of Supply Shaping Through Curtailment

Marc Perez Clean Power Research

For achieving high- penetration renewables!

This work is based upon work supported by:

National Science Foundation GRF Grant No. DGE 1144155

DoE Sunshot Grant No. DE-EE0007669

Columbia University Center for Life Cycle Analysis

Clean Power Research

Why do we think we need backup to achieve high penetration?

It's because wind + solar are intermittent and what we really need is **firm power** Storage is considered to be the keystone to mitigate variability on all timescales Intraday Variability

Interday variability: mesoscale weather 8 9 2 Jan May Nov Mar Jul Jan Daily Interval

But impossible due to diurnal intermittency...

Possible with storage...

Oversizing Effect on Aggregate LCOE

Simplified PV/Storage Dispatch Schema

Modeling Inputs

Physical Data

- ➤ High resolution (spatial/temporal) time-synchronous SolarAnywhere® Resource Data: T, Irradiance
- Firm, Guaranteed Production Profile (time-synchronous load)
- NCLD Landcover
- > Tech. specs for PV, storage

<u>Development Data</u> _

- > High/Low Technological Development
- Residential/Community/Commercial/Utility Dev.
 - CapEx for PV, Storage (\$/kW | \$/kWh)
 - OpEx for PV, Storage (\$/kWh | \$/kWh)
 - WACC/discount rate
 - Spatial Allocation

PV + Storage Meeting 100% of Hourly Load in MN, Utility-scale-led, <u>Low</u> Technological Development in 2050, WACC of 3% <u>single point</u>.

PV Allocated just in Minneapolis

PV Spread more evenly (yet still Avoiding sensitive landcover)

Geographic Dispersion Has an Effect on Cost

PV + Storage Meeting 100% of Hourly Load in MN, Utility-scale-led, <u>Low</u> Technological Development in 2050, WACC of 3% <u>distributed</u>.

... As the degree of technological development

PV + Storage Meeting 100% of Hourly Load in MN, Utility-scale-led, <u>High</u> Technological Development in 2050, WACC of 3%

Simplified PV/Storage Dispatch Schema

Wind + Storage Meeting 100% of Hourly Load in MN, Utility-scale-led, High Technological Development in 2050, WACC of 3%

Costs can be reduced further by blending the wind and solar resources

...where anticorrelated

Optimal Wind/PV + Storage Meeting 100% of Hourly Load in MN, Utility-scale-led, High Technological Development in 2050, WACC of 3%

Adding a small amount of conventional gas e.g. from stranded assets

Optimal Wind/PV + Storage Meeting 95% Hourly Load in MN, 5% met by gas Utility-scale-led, High Technological Development in 2050, WACC of 3%

EV Modeling in MN

DSM Can shift load to surplus hours, but unless V2G is only intraday

Optimal Wind/PV + Storage Meeting 95% Hourly Load in MN, 5% met by gas Utility-scale-led, High Technological Development in 2050, WACC of 3% <u>+EV electrification & load-shifting</u>

Key Takeaways

- Supply shaping via oversizing + curtailment has significant value for minimizing cost at high penetration
- Major cost reduction by optimizing relative penetration of PV + wind
- Major cost reduction by including minor amounts of gas backup at key times to minimize need for storage

55% PV, 40% wind, 5% gas

3.6 c/kWh

Inexpensive, Firm PV Without Conventional Backup: The Role of Supply Shaping Through Curtailment

Marc Perez Clean Power Research

For achieving high- penetration renewables!

This work is based upon work supported by:

National Science Foundation GRF Grant No. DGE 1144155

DoE Sunshot Grant No. DE-EE0007669

Columbia University Center for Life Cycle Analysis

Clean Power Research